skip to main content


Search for: All records

Creators/Authors contains: "Pokharel, Bal K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract The origin of the weak insulating behavior of the resistivity, i.e. $${\rho }_{xx}\propto {\mathrm{ln}}\,(1/T)$$ ρ x x ∝ ln ( 1 / T ) , revealed when magnetic fields ( H ) suppress superconductivity in underdoped cuprates has been a longtime mystery. Surprisingly, the high-field behavior of the resistivity observed recently in charge- and spin-stripe-ordered La-214 cuprates suggests a metallic, as opposed to insulating, high-field normal state. Here we report the vanishing of the Hall coefficient in this field-revealed normal state for all $$T\ <\ (2-6){T}_{{\rm{c}}}^{0}$$ T < ( 2 − 6 ) T c 0 , where $${T}_{{\rm{c}}}^{0}$$ T c 0 is the zero-field superconducting transition temperature. Our measurements demonstrate that this is a robust fundamental property of the normal state of cuprates with intertwined orders, exhibited in the previously unexplored regime of T and H . The behavior of the high-field Hall coefficient is fundamentally different from that in other cuprates such as YBa 2 Cu 3 O 6+ x and YBa 2 Cu 4 O 8 , and may imply an approximate particle-hole symmetry that is unique to stripe-ordered cuprates. Our results highlight the important role of the competing orders in determining the normal state of cuprates. 
    more » « less
  2. null (Ed.)